[ 223 ]

XIII. On anew Method of Approximation applicable to Elliptic and Ultra-elliptic Functions.
By CuarLes W. MERRIFIELD.  Comimunicated by the Rev. H. MoseLEY, F.R.S.

Received March 26,—Read May 24, 1860.

Tae difficulty of finding approximate values of elliptic functions of the third kind has
led me to consider a general method of approximation, which I believe to be new, at
least in its application to the evaluation of integrals of irrational functions.

It depends on the known principle that the geometric mean between two quantities
is also a geometric mean between their arithmetic and harmonic means. If we take
any two positive quantities, we may approximate to their geometric means as follows :—
Take the arithmetic and harmonic means of the two quantities, then again take the
arithmetic and harmonic means of those means, and so on: the successive means will
approximate with great rapidity to the geometric mean.

To judge of the convergence of the method, I give, in the first two columns of the
following little Table, the arithmetic and harmonic means thus derived from the numbers
1 and 2 (which is the most unfavourable case that need present itself). The third
column contains the difference of the first two, within which lies the error of either.

3 4 1
2 3 6
17 24 1
12 17 204
577 816 1
408 577 235416
665857 941664 1
470832 665857 313506783024

Either of the fourth pair would thus give the square root of 2, correct to eleven places
of decimals.

This method finds its application in evaluating the integral {fx.o/¢x.dz, where f
and @« are rational functions of # which both increase or decrease regularly, and have
no singular values, within the limits of integration. If we find successive means, as
above described, say A, and H,, between fx and fx.px, then it is clear that, since
frn/ox always lies between A, and H,, so § fx.n/px.dz must lie between ‘S'A,@,.dw and
SH‘,. dr. Now A, and H, are each the product of fx and a rational function of ge, and
are therefore themselves rational functions of #. They are therefore always integrable.

It is not to be denied that the application of this method to the functions which call
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for its use is cumbrous; but there is no other way of treating them which is not open
to the same complaint, for, in reality, they are exceedingly complex of themselves.

The following are the first three terms of the arithmetic means, with the correspond-
ing harmonic means written under them, derived from & and y :—

2ry @+ 62y +y° 2+ 2827 + 7027 + 281> +
2 Aoty 8@+ 72+ Tay? L)
2y Aay(z+y) Bay(a® + 1oy +7:vy )

$+J 'z2+6$./+./ a’ +28:Z3j+70$ Y +28,z'y +y4

It is convenient to use the arithmetic in preference to the harmonic series for inte-
gration, as the divisor contains one binomial factor less. The third arithmetic mean
may be resolved into the following form :—

w+y

2 AUARRTICEE V2)y 2 a+(3-242)y
Note that
4

3— 2v§ (2— v2)?

(2427 =2(34+2/2)=

and that B
log (34-24/2)=0-76555 13706 75726.

If a further approximation be thought necessary, it is possible to resolve into partial
fractions the fourth arithmetic mean; but if we go beyond this we shall have to solve a
reciprocal equation of the eighth degree with all its roots real. The fourth arithmetic
mean will have for its divisor

16(@+y)(2°+6xy+5°) (2 + 282y + 707+ 282y* +4*):
the roots of the biquadratic factor, with their signs changed, are
TH4y/24 v(801+564/2) and T44/2— v/(80+561/2):
their approximate values are
2527414 23690 882
2:23982 88088 434

0-44646 26921 718
003956 61298 966

The difference between any (say the nth) pair of means of the series has always (x=1)
to the power of 2" for its numerator, and the product of the denominators for its deno-
minator. The logarithm of the error is therefore always much less than

2"log (x—y)—(2"~1)log (24y)—nlog 2.
I shall now indicate the mode of applying this method to the general form of an

. . + N sin?® d
elliptic functlon,j Trsm® :: i _; e =(ude.

It is obvious that the nearer the ratio ': # is to unity, the less number of terms shall
we require to obtain a given degree of accuracy. In elliptic functions which involve a
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radical of the form ,/T—¢*sin? ¢, this ratio may always be brought within the limits of

1 . . - .
3 and %; for, if ¢ sin ¢ should exceed —;/1-5, we may put the radical under one of the forms

cos @8/ 14(1—¢®) tan® ¢ or JI1=¢ \/ 1+ ¢ tan® @, and one or other of these new

1—¢?
radicals will always be less than A/2. 1 should have remarked that ¢ never exceeds
unity.
We may take % as a geometrical mean between v and v(1—¢*sin’¢), where

1+ Nsin2g _+N 1 n—N 1
1+nsin?¢)(1—c?sin?@)~ ¢*+n l—cgsin9¢+cg+n 1+ nsin® ¢

’l)=(

We can put 2=1 and y=1—¢*sin*, or vice versd, as may be convenient. Making
either substitution, and reducing to partial fractions the mean which we select for inte-
gration, we have to multiply each fraction by the second value of v, which doubles the
number of fractions, and the index of their denominators; but on again decomposing
the fractions, and grouping them by their denominators, we reduce them to two more
than those into which we had previously decomposed the mean. The two extra frac-
tions will, of course, have 14 sin*¢ and 1—¢’sin*¢ for their denominators. If we stop
at the third arithmetic mean we shall thus have five partial fractions to integrate, and
for the third harmonic mean, six. I do not actually exhibit the work or its results,
because my doing so would not save labour to any one. Not only would the resulting for-
mula be complicated with constants more easily managed in an arithmetical form, but it
will seldom happen in practice that it will be worth while to reduce the elliptic function
to the normal form given above. I have, however, done enough to show that my method
is capable of approximately reducing any form, containing a function under the radical
of the square root, to a small series of terms involving, at highest, logarithms or inverse
tangents in their integrals. Moreover the approximation is so rapid, that, in the case
of an elliptic integral of the third kind and of logarithmic form, nothing would be
gained by having recourse to the interpolation of the only possible table, that of the
double integralbﬁo—:/?—_—lz—%—ﬁ j"oe\/ 1—¢*sin®d.d¢*. The third pair of means will give
six or more places of figures correct, and the fourth arithmetic mean is capable of giving
twelve places.

With respect to the actual integration of the partial fractions ultimately obtained,
there is no difficulty. It will easily be seen that each partial fraction will be of the

The integral of this with regard to @ is
1
V1+p
If 14-p is negative (= —g?, suppose), this integral takes the form
{1 -+ ¢ tan gb}.
2q "°¢|1—gtang

1
—log
MDCCCLX. 21

form ——
orm 1+4psin?e’

tan™'{ v'14p.tan ¢}.



226 MR. C. W. MERRIFIELD ON A NEW METHOD OF APPROXIMATION

It is obvious that we may approximate in the same way to the values of ultra-elliptic
integrals; but the process will be more lengthy, on account of the greater complexity
of these functions.

In the case of higher radicals than the square root, so far as concerns a first approxi-
mation only, it is clear' that, if we insert several means between two integrable functions,
any given geometric mean will be intermediate in value to the corresponding arithmetic
and harmonic means; but, inasmuch as the process affords no indication of what the
second step is to be, it does not seem to have any useful application to such functions.
But it brings ell elliptic and ultra-elliptic functions within practical reach of the
numerical computer.

ADDENDUM.
Received March 29,—Read May 24, 1860.

I have thought it advisable, upon reconsideration, to give the approximate formula

for 5"5 1+ Nsin?¢p dep

. THnsin®e vI=cente derived from the third mean of the arithmetic series :—

IN 1,1 1 1 1 ,1 1 1 n—N | i
8 n +{§+8 wreTiarieTa n+2+\/§ce+4 n+z-\/§cg}wm“‘“ {(14n)". tan o}
4 4

1 N+ 1 1 N\ -4 \
+3 n:-cfZ i tan~'{(1—c*)". tanqo}-{-i 1:: (1—502> tan"{(l-—%ﬁ) tan@}

2-+4/2
N+ 2 —
1 4 2 \/2 -% _ 2—|—\/2
+; (1— + c?> tan ‘{(1 c> ta,ngb}
4 n+2+4\/262 4

. N+~2:—“L§- 2 -3 5 \1
i, () e (1) e

1 also observe that com. log 2+4““/§ =9-93123 06918 42

log 2=/ =9-16567 93211 66.

The application of this formula, in the shape given above, requires that 14-n be
positive, and that ¢ sin ¢ shall not exceed sin 45°,
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If we equate n to N, we obtain for the approximate value of rp(l —¢*sin? p)~4dp, or F(cp),
0
1 "% '}
é ¢+% (1—¢*) " tan~'{(1—c*)} tan ¢} -|—}1<1 —%c”) tan‘l{ (1-—%0“’) tan qb}
_1_ __‘2—!—\/5 2 -3 . —1{( _2+\/§ )7:7
+4{1 n c} tan 1 -——4—02 tan ¢}

—|-}1{1 —2—4\/5(;2}—% tan"‘{ (1 —52-—7‘—1\-/——5-6‘2)%T tan ‘P}

I now apply the numerical values p= %7:', ¢= sin 45°, which, as has already appeared,

' . 1 .
lead to the most unfavourable case for approximation. For ¢=g all the inverse

1 . . .
tangents become =7, and, by reducing the last two terms to a single radical, we

2
easily obtain
ko ] N R R B [6 T35
F(Sln 4:5 9 'Q‘%") ZEW’{§+Z sIn 4:5 +§Sln 60 + 6+3\4/34}

::%‘z‘)( 1-18034 09494 53=1-85407 52150.

This exceeds the exact value given by LEcENDRE, 1:85407 46773, by 0:00000 05377.
The logarithm of the factor of ~;—vr is 0-07200 74748, of which the error is 0:00000 01290,

in excess.

It follows from this that the necessary error of the process, where the third mean of
the arithmetic series is used, will never be more than a unit in the seventh place, and it
is evident that this error will always be in excess. By an arbitrary correction, of which
the amount may be easily guessed in any given case, the seventh place may always be
made accurate.
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